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Yunxuan Xiao
Software Engineer @ Anyscale
- Maintainer of Ray Train and Ray Tune.

- Building large-scale distributed training 
infrastructure.
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Speakers
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Hao Chen

Staff Software Engineer @ Anyscale
● Tech lead of Ray Data. 
● Early Ray committer.
● Previously led Ant Group’s Ray team that built 

world’s largest Ray production workloads.
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• We pre-trained the Stable Diffusion v2 model on ~2 billion images for under $40,000.

• Utilized Ray Data to efficiently process large datasets with heterogeneous resources and 

mitigate preprocessing bottlenecks.

• Conducted scalable, fault-tolerant training with Ray Train, accelerating training 

throughput by 3x with infrastructure and algorithm optimizations.

Overview
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• Stable Diffusion Pre-training and Challenges

• Scalable Data Processing with Ray Data

• Efficient Distributed Training with Ray Train
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• Stable Diffusion Pre-training and Challenges

• Scalable Data Processing with Ray Data

• Efficient Distributed Training with Ray Train
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● A pre-trained VAE and a text encoder(OpenCLIP-ViT/H) encodes the input images and 

text prompts. 

● A trainable U-Net model learns the diffusion process with the image latents and text 

embeddings. 

7

Stable Diffusion Model Architecture
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• Avoid generating illegal or copyrighted contents.

• Train Proprietary Model for better performance.

• Reduce reliance on third party libraries and licenses.
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Why pre-train from scratch?

Mickey Mouse in front of a McDonalds sign. [link]Illegal CSAM content in LAION-5B dataset. [link]

https://arstechnica.com/tech-policy/2023/04/stable-diffusion-copyright-lawsuits-could-be-a-legal-earthquake-for-ai/
https://laion.ai/notes/laion-maintenance/
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● Scalable and Performant Data Preprocessing
○ Large Scale Dataset: 2B Images
○ Complex and heavy Preprocessing logics 
○ Includes both CPU and GPU-intensive workloads

● Efficient Distributed Large-scale Training 
○ Long-running Job: 13,000+ A100 Hours
○ Fault-tolerant training and maximize GPU utilization
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Challenges of SD Pretraining
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• Challenges in Stable Diffusion Pretraining

• Scalable Data Processing with Ray Data

• Efficient Distributed Training with Ray Train
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Traditional Data Pipeline w/ Torch 
DataLoader

● Ingest data from S3 using 
Torch DataLoader

● Sequentially execute the 
following preprocessing
functions:
○ Image transformation
○ Text tokenization
○ Image encoding
○ Text encoding

● Feed data into the U-net 
model for training

● Everything running on the 
same A100 nodes.
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Data preprocessing blocks GPU training

● Image transformation and text 
tokenization only use CPUs.

● Encoding doesn’t need A100s.

● Low GPU utilization
○ 39% time spent on encoding 

w/ only 25% GRAM utilization.

GPU Memory footprint over time in an iteration on A100-80G. The red dashed lines represent 
the start and end times of each step.
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Offline Data Preprocessing 

● Offline data preprocessing job:
○ Load data from S3
○ Transform images and tokenize 

captions
○ Infer images and texts with 

encoders on A10G GPUs
○ Save results to back to S3 

● Training job:
○ Ingest preprocessed data
○ Feed directly into A100
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● Ray Data: a scalable data processing library for ML workloads built 
on top of Ray. Particularly optimized for 2 scenarios:

● Offline batch inference
○ Image/video/audio processing + inference, embedding generation, LLM 

batch inference, etc.
● Training ingestion

○ Scalable training data loading and preprocessing.

Ray Data
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Implementing Offline Preprocessing 
w/ Ray Data
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• Streaming execution, scalable to petabyte-scale data

• Support heterogeneous resource requirements

• Automatic failure recovery

• Support a large variety of data sources and formats
• S3, GCS
• Parquet, images, JSON, text, CSV, etc.

• Python native & seamless integration with other ML libraries

Why Ray Data
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CPU GPU

Why Ray Data (cont’d)

Image 
transform

Text 
tokenize

Image 
encode

Text 
encodeS3 S3

Data chunks

Image 
transform

Text 
tokenize

Image 
transform

Text 
tokenize

Image 
encode

Text 
encode

Ray Object Store

● Streaming data loading, 
processing, writing.

● Intermediate data 
buffered in Ray Object 
Store.

● Schedule tasks with 
heterogeneous 
resource requirements.

●Operators adjust 
parallelism dynamically 
and independently.
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Benchmark Results

Throughput scales linearly while adding more A10Gs. Constant 95+% GPU utilization
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Benchmark Results (cont’d)

+45% training throughput with preprocessed data
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• Development velocity
• When experimenting with different preprocessing logics, need to wait for days 

to preprocess the entire dataset.

• Flexibility
• Doesn’t support dynamic preprocessing logics

• e.g. random crop, multi-aspect

21

Limitations of Offline Preprocessing

Online preprocessing without blocking A100 GPUs?
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● Reuse the same preprocessing 
pipeline code

Ray Data For Online Preprocessing

● Dynamically split data across distributed 
workers; no need for manual sharding

Heterogeneous 
GPU 
requirements
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CPU A10G GPU A100 GPU

Architecture w/ Ray Data

Image 
transform + 

text tokenize
Image + text 

encode

U-Net train

Image 
transform + 

text tokenize

Image 
transform + 

text tokenize

Image 
transform + 

text tokenize

Image + text 
encode

Image + text 
encode

U-Net train

S3

Ray Object Store

● Schedule different 
stages on different 
hardwares separately.

● Each stage scales up 
individually, making 
GPUs always saturated.

● Streaming across the 
entire pipeline. 
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Benchmark Results

Throughput scales linearly while adding more A10Gs until 
reaching the same number as offline processing.

Online 
Preprocessing w/ 
Torch DataLoader

Online 
Preprocessing w/ 
Ray Data

Cluster 4 x p4de.24xlarge 4 x p4de.24xlarge
40 x g5.2xlarge

Training throughput 
(images/s)

2811 4075 (+45%)

Total training time 
on Anyscale

111.3h 76.8h (-31.0%)

Cost per epoch $18,192 $16,275 (-10.5%)

Ray Data vs Torch DataLoader for online preprocessing
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● Offline Data Preprocessing
○ Streaming and scalable. 
○ Fault tolerant.
○ Maximizes GPU utilization w/ heterogeneous resource scheduling.

● Online Data Preprocessing
○ Unified data pipeline code.
○ Splits data for distributed training dynamically.
○ Improves perf by scaling out data preprocessing on CPUs and lower-end 

GPUs.
○ Makes A100s dedicated for U-Net training, improving A100 availability.

Ray Data for SD Data Preprocessing
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• Challenges in Stable Diffusion Pretraining

• Scalable Data Processing with Ray Data

• Distributed Training with Ray Train
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Ecosystem Integrations

● ML Frameworks

○ PyTorch, HuggingFace, 

Lightning, TensorFlow, …

● Cloud Providers:

○ AWS, GCP, Azure, Aliyun, 

vSphere, …

● Cluster Managers:

○ K8s, Yarn, Slurm, LSF, …
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Distributed Training with Ray Train
Ray Train Ecosystem
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Distributed Training with Ray Train
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Distributed Training with Ray Train
PyTorch Integration
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Setup distributed env

Setup DDP model

Setup distributed 
sampler

Move batches to GPU
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Distributed Training with Ray Train
PyTorch Lightning Integration



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Key features of Ray Train

• Efficient Distributed Checkpoint

• Fault-Tolerant Training

• Easily integrate with training acceleration techniques
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● Each worker independently syncs its checkpoint(shard) to cloud storage (e.g. S3, GCS).

● Support flexible checkpointing logics (World Rank 0, Local Rank 0, All ranks)

32

Efficient Distributed Checkpoint
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Fault-tolerant Training

● Ray Cluster automatic scales up on node failure

● Restore training from the latest checkpoint
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● FSDP [8] is designed to reduce communication overhead by sharding model state. With 

SHARD_GRAD_OP mode, which partition the gradient and optimizer states among all workers.

● Compared to DDP, it reduces communication overhead of full gradient synchronization and also reduces 

peak GRAM usage, allowing for larger batch sizes and higher throughput.

34

Training Acceleration
FSDP
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● Elastic Fabric Adapter (EFA) provides lower and more consistent latency and higher throughput than 

the TCP transport traditionally used in cloud-based HPC systems. 

● Significantly reduces the communication overhead and speeds up distributed training. 
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Training Acceleration
EFA
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Table 4.a: Training throughput (images/s) and 

speedup on 16 x A100-40G. 
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Training Acceleration
Ablation Study - Training Speedup

Table 4.b: Training throughput (images/s) and 

speedup on 32 x A100-80G. 
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Results

● Ray Data helps 
resolved 
preprocessing 
bottlenecks, boosting 
training throughput by 
30%.

● System and training 
optimizations further 
reduce training costs 
by 3x over baseline.

● We pre-trained the 
Stable Diffusion v2 
model from scratch for 
under $40,000.
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Takeaways

● Decouple encoder forward pass from Unet training to resolve preprocessing 

bottleneck.

● Leverage heterogeneous resources to reduce overall training costs.

● Implement fault-tolerant training and efficient checkpointing to minimize 

training progress loss.

● Apply infrastructure and algorithmic optimizations to accelerate training 

speed.
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Thank you
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