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Overview

e We pre-trained the Stable Diffusion v2 model on ~2 billion images for under $40,000.
o Utilized Ray Data to efficiently process large datasets with heterogeneous resources and

mitigate preprocessing bottlenecks.
o Conducted scalable, fault-tolerant training with Ray Train, accelerating training

throughput by 3x with infrastructure and algorithm optimizations.
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Content

o Stable Diffusion Pre-training and Challenges
o Scalable Data Processing with Ray Data

» Efficient Distributed Training with Ray Train

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved



Content

o Stable Diffusion Pre-training and Challenges
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Stable Diffusion Model Architecture
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® A pre-trained VAE and a text encoder(OpenCLIP-ViT/H) encodes the input images and
text prompts.
® A trainable U-Net model learns the diffusion process with the image latents and text

embeddings.
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Why pre-train from scratch?
SAFETY REVIEW FOR LAION 5B

by: LAION.ai, 19 Dec, 2023

There have been reports in the press about the results of a research project at Stanford University, according to which the LAION
training set 5B contains potentially illegal content in the form of CSAM. We would like to comment on this as follows:

LAION is a non-profit organization that provides datasets, tools and models for the advancement of machine learning research. We
are committed to open public education and the environmentally safe use of resources through the reuse of existing datasets and
models.

LAION datasets (more than 5.85 billion entries) are sourced from the freely available Common Crawl web index and offer only links
to content on the public web, with no images. We developed and published our own rigorous filters to detect and remove illegal
content from LAION datasets before releasing them.

LAION collaborates with universities, researchers and NGOs to improve these filters and are currently working with the Internet
Watch Foundation (IWF) to identify and remove content suspected of violating laws. LAION invites the Stanford researchers to join
its Community to improve our datasets and to develop efficient filters for detecting harmful content.

LAION has a zero tolerance policy for illegal content and in an abundance of caution, we are temporarily taking down the LAION
datasets to ensure they are safe before republishing them.

Following a discussion with the Hamburg State Data Protection Commissioner, we would also like to point out that the CSAM data is
data that must be deleted immediately for data protection reasons in accordance with Art. 17 GDPR.

lllegal CSAM content in LAION-5B dataset. [link] Mickey Mouse in front of a McDonalds sign. link]

e Avoid generating illegal or copyrighted contents.
e Train Proprietary Model for better performance.

e Reduce reliance on third party libraries and licenses.
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https://arstechnica.com/tech-policy/2023/04/stable-diffusion-copyright-lawsuits-could-be-a-legal-earthquake-for-ai/
https://laion.ai/notes/laion-maintenance/

Challenges of SD Pretraining

@ Scalable and Performant Data Preprocessing
O Large Scale Dataset: 2B Images
O Complex and heavy Preprocessing logics
O Includes both CPU and GPU-intensive workloads

@ Efficient Distributed Large-scale Training
O Long-running Job: 13,000+ A100 Hours
O Fault-tolerant training and maximize GPU utilization
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Content

e Challenges in Stable Diffusion Pretraining
e Scalable Data Processing with Ray Data

o Efficient Distributed Training with Ray Train
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Traditional Data Pipeline w/ Torch
Dataloader

@® Ingest data from S3 using
Torch DatalLoader 1 g
® Sequentially execute the | | |
following preprocessing | el
functions:
O Image transformation | |,
O Text tokenization '
O Image encoding | = | o
O Text encoding s ani,
@® Feed datainto the U-net |
model for training
@® Everything running on the
same A100 nodes.  eewe.

eeeeee

Image
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Data preprocessing blocks GPU training

@® Image transformation and text

tokenization only use CPUs.
® Encoding doesn’t need A100s.

@® Low GPU utilization
O 39% time spent on encoding
w/ only 25% GRAM utilization.
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Offline Data Preprocessing

@® Offline data preprocessing job: @® Training job:
O Load data from S3 O Ingest preprocessed data
O Transform images and tokenize O Feed directly into A100
captions
O Infer images and texts with
encoders on A10G GPUs
O Save results to back to S3

o | 0o -

Cloud/Local | A10G Cloud/Local

Storage Storage

A10G
Images Image latents
\’ Imag Text Image Text —
Texts transform | 7| tokenize | encode [T 7| encode Text embeddings
Offline Preprocessing > +— Model Training —
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Ray Data

@® Ray Data: a scalable data processing library for ML workloads built
on top of Ray. Particularly optimized for 2 scenarios:

@® Offline batch inference
O Image/video/audio processing + inference, embedding generation, LLM
batch inference, etc.
@® Training ingestion
O Scalable training data loading and preprocessing.
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Implementing Offline Preprocessing
w/ Ray Data

# Define a callable class that conducts inference with
# image and text encoders.
# 1. Load data from S3. class SDLatentEncoder:
ds = ray.data.read_parquet("s3://input_path")
def __init__(self):
# Load and cache image and text encoders.
self.vae = AutoencoderKL.from_pretrained("...").to("cuda")
# Define a function that transforms images and tokenizes self.text_encoder = CLIPTextModel.from_pretrained("...").to("cuda")
# captions for each row. . y
3 def __call__(self, batch):
def transform_and_tokenize(row): encoded_batch = {}

row["image"] = crop_and_normalize(row["image"]) with torch.no_grad():
row["caption_ids"] = tokenize(row["caption_ids"]) # Encode images and texts for each batch.
return row encoded_batch["image_latents}"] = self.vae.encode(batch["image"]1)[

"latent_dist"
]
encoded_batch["caption_embeddings"] = self.text_encoder(
# 2. Apply transform batch["caption_ids"]

ds = ds.map(transform_and_tokenzie) )
return encoded_batch

# 3. Apply encoder inference.

ds = ds.map_batches(SDLatentEncoder, batch_size=100, num_gpus=1)
# 4. Write results to S3.

ds.write_parquet("s3://output_path")
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Why Ray Data

e Streaming execution, scalable to petabyte-scale data
e Support heterogeneous resource requirements
e Automatic failure recovery

e Support a large variety of data sources and formats
e S3,GCS
e Parquet, images, JSON, text, CSV, etc.

e Python native & seamless integration with other ML libraries
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Ray Data
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® Streaming data loading,
processing, writing.

® Intermediate data
buffered in Ray Object
Store.

® Schedule tasks with
heterogeneous
resource requirements.

@® Operators adjust
parallelism dynamically
and independently.



Benchmark Results

Offline Preprocessing Throughput w/ Ray Data
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Benchmark Results (cont’d)
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+45% training throughput with preprocessed data
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Limitations of Offline Preprocessing

e Development velocity
e When experimenting with different preprocessing logics, need to wait for days

to preprocess the entire dataset.
e Flexibility

e Doesn’t support dynamic preprocessing logics

e e.g.random crop, multi-aspect

Online preprocessing without blocking A100 GPUs?

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved $
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Ray Data For Online Preprocessing

# 1. Reuse the same code as the offline job to create the datasets.
def create_dataset(input_uri):
ds = ray.data.read_parquet(input_uri)
ds = ds.map(transform_and_tokenzie)
ds = ds.map_batches(
SDLatentEncoder,
batch_size=100,
DuL.gRus=1
[ accelerator_type=NVIDIA_TESLA_ Al0G, ]
)

return ds

# 2. Create 2 datasets and pass them to the Trainer.
datasets = {
"train": create_dataset("s3://train_data"),
"validation": create_dataset("s3://validation_data"),

@® Reuse the same preprocessing
pipeline code

def train_func():

# 3. In the training function, get the data shard for the

# current training worker. And feed data batches to the model.
train_ds = ray.train.get_dataset_shard("train")
train_dataloader = train_ds.iter_torch_batches(batch_size=50)

for batch in train_dataloader:

# Internally Ray Data dynamically splits the datasets across
# distributed training workers.
trainer = TorchTrainer(

train_func,
datasets=datasets,
scaling_config=ScalingConfig(

s ey Heterogeneous

use_gpu=True, GPU

resources_per_worker={

"num_gpus": 1, reqUII’ementS

["accelerator_type": NVIDIA_AlBO,]

}
),

trainer.fit()

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved

® Dynamically split data across distributed
workers; no need for manual sharding
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Architecture w/ Ray Data

o | =
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® Schedule different
stages on different
hardwares separately.

@ Each stage scales up
individually, making
GPUs always saturated.

@® Streaming across the
entire pipeline.



Benchmark Results
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Throughput scales linearly while adding more A10Gs until
reaching the same number as offline processing.
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Cluster

Training throughput
(images/s)

Total training time
on Anyscale

Cost per epoch

Online
Preprocessing w/
Torch DatalLoader

4 x p4de.24xlarge

2811

111.3h

$18,192

Online
Preprocessing w/
Ray Data

4 x p4dde.24xlarge
40 x g5.2xlarge
4075 (+45%)

76.8h (-31.0%)

$16,275 (-10.5%)

Ray Data vs Torch Dataloader for online preprocessing
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Ray Data for SD Data Preprocessing

@® Offline Data Preprocessing
O Streaming and scalable.
O Fault tolerant.
O Maximizes GPU utilization w/ heterogeneous resource scheduling.

® Online Data Preprocessing
O Unified data pipeline code.
O Splits data for distributed training dynamically.
O Improves perf by scaling out data preprocessing on CPUs and lower-end
GPUs.
O Makes A100s dedicated for U-Net training, improving A100 availability.
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Content

e Challenges in Stable Diffusion Pretraining
e Scalable Data Processing with Ray Data

e Distributed Training with Ray Train
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Distributed Training with Ray Train

Ray Train Ecosystem

; ML Applications . Ecosystem Integrations

lZZZ::Z:::::Z::ZZ::::::::::ZZZ:Z:::::Z:::Z; e ML Frameworks

I %@DQmem ! .

B o PyTorch, HuggingFace,
%}RAY Lightning, TensorFlow, ..

e (Cloud Providers:
Resource Orchestration o AWS, GCP, Azure, Aliyun,
kues ﬂsi:;;;:[l @%YERHNBBP VSpheIe, hidd

e Cluster Managers:
o K8s, Yarn, Slurm, LSF, ..

Cloud Providers

aws S A [N ) &

ON PREMISE
Lambda
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Distributed Training with Ray Train

°3» Ray Train Trainer

Scaling Configuration O o . Training Function

Launch workers l Run Training Function

from ray.train.torch import TorchTrainer
from ray.train import ScalingConfig

def train_func(config):
# Your PyTorch/Lightning/Hugging Face training code here.

»§’ Ray cluster
scaling_config = ScalingConfig(num_workers=4, use_gpu=True)
Worker 1 Worker 2 Worker 3 Worker ... trainer = TorchTrainer(train_func, scaling_config=scaling_config)
Training Training Training Training result = trainer.fit()
Function Function Function Function
DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved $
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Distributed Training with Ray Train
() PyTorch Integration

Setup distributed env

Setup DDP model

Setup distributed
sampler

Move batches to GPU

DATA'Al SUMMIT

def train_func(config):
dist.init_process_group("nccl")
rank = os.environ["LOCAL_RANK"]
device = torch.device(f"cuda:{rank}")

model = MyTorchModel(...)
model = model.to(device)
model = DDP(model, device_ids=[device])

sampler = DistributedSampler(
dataset,
rank=os.environ["RANK"],
num_replicas=os.environ["WORLD_SIZE"],
shuffle=True,

)

dataloader = DatalLoader(

samplexr=sampler

)

# Training
for epoch in range(num_epochs):
for inputs, labels in dataloader:
# train batch
inputs = inputs.to(device)
labels = labels.to(device)

from ray.train.torch import prepare_model, prepare_data_loader
def train_func(config)
model = MyTorchModel(...)

model = prepare_model(model)

dataloader = DataLoader(...)
dataloader = preapre_data_loader(dataloader)

# Training

for epoch in range(num_epochs): F{ _r' 1
for inputs, labels in dataloader: EaB/ rzalr1

from ray.train.torch import TorchTrainer
from ray.train import ScalingConfig

trainer = TorchTrainer(

train_func,

scaling_config=ScalingConfig(num_workers=16, use_gpu=True)
)
trainer.fit()

hc. — Allirights reserved <
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Distributed Training with Ray Train

0 PyTorch Lightning Integration

import pytorch_lightning as pl
from pytorch_lightning.strategies import DDPStratesy
from pytorch_lightning.plugins.environments import LightningEnvironment

def train_func(config):
model = CustomLightningModule(...)
dataloader = CustomDataLoader(...)

trainer = pl.Trainer(
ceey
device="auto",
strategy=DDPStrategy(),
plugins=[LightningEnvironment()]

trainer.fit(model, train_dataloaders=dataloader)

DATA'Al SUMMIT

import pytorch_lightning as pl
from ray.train.lightning import RayDDPStratesgy, RayLightningEnvironment, prepare_trainer

@ Ray Train

def train_func(config):
model = CustomLightningModule(...)
dataloader = CustomDataloader(...)

trainer = pl.Trainer(

Sy
device="auto",
strategy=RayDDPStrategy(),
plugins=[RayLightningEnvironment ()]

)

trainer = prepare_trainer(trainer)

trainer.fit(model, train_dataloaders=dataloader)

from ray.train.torch import TorchTrainer
from ray.train import ScalingConfig

trainer = TorchTrainexr(

train_func,

scaling_config=ScalingConfig(num_workers=16, use_gpu=True)
)
trainer.fit()

1
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Key features of Ray Train

o Efficient Distributed Checkpoint
e Fault-Tolerant Training

e Easily integrate with training acceleration techniques

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved



Efficient Distributed

Cloud Storage (S3, GCS, ...)

1

ckpt_shard_0

1

ckpt_shard_1
[l

T

ckpt_shard_2
[l

T

ckpt_shard_3

Rank 0

Rank 1

Rank 2

Rank 3

@® Each worker independently syncs its checkpoint(shard) to cloud storage (e.g. S3, GCS).

Distributed Checkpoint

Checkpoint

def train_func():
context = ray.train.get_context()
world_rank = context.get_world_rank()

# Save ckpt to */ckpt_dir/shard_{world_rank}
ckpt = Checkpoint.from_directoy(“*/ckpt_dir”)
ray.train.report(..., ckpt=ckpt)

trainer = TorchTrainer(
train_func,
run_config=RunConfig(
storage_path="s3://ray-train-experiments/"”
5
)

@® Support flexible checkpointing logics (World Rank O, Local Rank 0, All ranks)

DATA'Al SUMMIT
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Fault-tolerant Training

ckpt n ckpt n+l ckpt n+2 ... ckpt n+k
1 |

] |IE
/?'11 ckpt = ray.train.get_checkpoint()
| ) Auto Re#toration

if ckpt:
! with ckpt.as_directory() as ckpt_dir:
A W R R

def train_func():
model = ...

trainer = TorchTrainer(

E— train_fune,

run_config=RunConfig(

I |

| ﬁ

I |

1 | Auto Restoration
I ‘ )

I

I

;

FailureConfig(max_failures=-1) Sl
failure_config=FailureConfig(max_failure=-1)

)
)

@® Ray Cluster automatic scales up on node failure

@® Restore training from the latest checkpoint
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Training Acceleration

FSDP

DATA'Al SUMMIT

MODEL ALL- > FORWARD ALL- BACKWARD > WEDATE I
SHARD GATHER (LOCAL) GATHER (LocAL)
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' ' '

N LAYERS N LAYERS

HE
MODEL ALL- FORWARD ALL- BACKWARD REDUCE- V:IJ:IDGAHTTES
SHARD GATHER (LocAL) GATHER (LOCAL) SCATTER (LOCAL) I

FSDP [8] is designed to reduce communication overhead by sharding model state. With

SHARD_GRAD_OP mode, which partition the gradient and optimizer states among all workers.
Compared to DDP, it reduces communication overhead of full gradient synchronization and also reduces

peak GRAM usage, allowing for larger batch sizes and higher throughput.
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Training Acceleration
EFA — . e \,
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Traditional HPC software stack in EC2 HPC software stack in EC2 with EFA

® Elastic Fabric Adapter (EFA) provides lower and more consistent latency and higher throughput than
the TCP transport traditionally used in cloud-based HPC systems.

@® Significantly reduces the communication overhead and speeds up distributed training.
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Training Acceleration
Ablation Study - Training Speedup

Baseline
+ EFA
(DDP)
Resolution @ 1269
1075
256x256 (118x)
Resolution @ 474
264
512x512 (1.86x)

+FSDP

1925
(1.79%)

667
(2.52x)

torch.compile

2910 (2.71x)

805 (3.05x%)

Table 4.a: Training throughput (images/s) and

speedup on 16 x AlQ0-40G.

DATA'Al SUMMIT

Resolution @
256x256

Resolution @
512x512

Baseline
(DDP)

1573

389

+ EFA

4068
(2.59x)

1029
(2.64%)

+FSDP

5014
(318x)

168
(3.00x)

ar

torch.compile

5908 (3.75x)

1349 (3.46x)

Table 4.b: Training throughput (images/s) and
speedup on 32 x AlQ0-80G.

©2024 Databricks Inc. — All rights reserved
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Results

Instance Type
Cloud Provider
GPU Type

Global Batch Size
Training Procedure
Total A100 Hours

Total Training Cost

DATA'Al SUMMIT

p4de.24xlarge

AWS (us-west-2)

A100-80G

4096

Phase 1: 1126,400,000 samples at resolution 256x256
Phase 2: 1,740,800,000 samples at resolution 512x512

13,165

$39,511 (1-yr reservation instances)

$67,405 (on-demand instances)

©2024 Databricks Inc. — All rights reserved

@® Ray Data helps

resolved
preprocessing
bottlenecks, boosting
training throughput by
30%.

System and training
optimizations further
reduce training costs
by 3x over baseline.

We pre-trained the
Stable Diffusion v2
model from scratch for
under $40,000.
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Takeaways

DATA'Al SUMMIT

Decouple encoder forward pass from Unet training to resolve preprocessing

bottleneck.

Leverage heterogeneous resources to reduce overall training costs.
Implement fault-tolerant training and efficient checkpointing to minimize
training progress loss.

Apply infrastructure and algorithmic optimizations to accelerate training

speed.
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Thank you

DATA'Al SUMMIT
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