
©2024 Databricks Inc. — All rights reserved

Yunxuan Xiao, Hao Chen (Anyscale Inc.)
[Date]

1

Efficient Stable Diffusion
Pre-Training on Billions of
Images with Ray

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Yunxuan Xiao
Software Engineer @ Anyscale
- Maintainer of Ray Train and Ray Tune.

- Building large-scale distributed training
infrastructure.

2

Speakers

2

Hao Chen

Staff Software Engineer @ Anyscale
● Tech lead of Ray Data.
● Early Ray committer.
● Previously led Ant Group’s Ray team that built

world’s largest Ray production workloads.

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• We pre-trained the Stable Diffusion v2 model on ~2 billion images for under $40,000.

• Utilized Ray Data to efficiently process large datasets with heterogeneous resources and

mitigate preprocessing bottlenecks.

• Conducted scalable, fault-tolerant training with Ray Train, accelerating training

throughput by 3x with infrastructure and algorithm optimizations.

Overview

4

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Stable Diffusion Pre-training and Challenges

• Scalable Data Processing with Ray Data

• Efficient Distributed Training with Ray Train

5

Content

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Stable Diffusion Pre-training and Challenges

• Scalable Data Processing with Ray Data

• Efficient Distributed Training with Ray Train

6

Content

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● A pre-trained VAE and a text encoder(OpenCLIP-ViT/H) encodes the input images and

text prompts.

● A trainable U-Net model learns the diffusion process with the image latents and text

embeddings.

7

Stable Diffusion Model Architecture

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Avoid generating illegal or copyrighted contents.

• Train Proprietary Model for better performance.

• Reduce reliance on third party libraries and licenses.

8

Why pre-train from scratch?

Mickey Mouse in front of a McDonalds sign. [link]Illegal CSAM content in LAION-5B dataset. [link]

https://arstechnica.com/tech-policy/2023/04/stable-diffusion-copyright-lawsuits-could-be-a-legal-earthquake-for-ai/
https://laion.ai/notes/laion-maintenance/

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Scalable and Performant Data Preprocessing
○ Large Scale Dataset: 2B Images
○ Complex and heavy Preprocessing logics
○ Includes both CPU and GPU-intensive workloads

● Efficient Distributed Large-scale Training
○ Long-running Job: 13,000+ A100 Hours
○ Fault-tolerant training and maximize GPU utilization

9

Challenges of SD Pretraining

9

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Challenges in Stable Diffusion Pretraining

• Scalable Data Processing with Ray Data

• Efficient Distributed Training with Ray Train

11

Content

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 12

Traditional Data Pipeline w/ Torch
DataLoader

● Ingest data from S3 using
Torch DataLoader

● Sequentially execute the
following preprocessing
functions:
○ Image transformation
○ Text tokenization
○ Image encoding
○ Text encoding

● Feed data into the U-net
model for training

● Everything running on the
same A100 nodes.

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 13

Data preprocessing blocks GPU training

● Image transformation and text
tokenization only use CPUs.

● Encoding doesn’t need A100s.

● Low GPU utilization
○ 39% time spent on encoding

w/ only 25% GRAM utilization.

GPU Memory footprint over time in an iteration on A100-80G. The red dashed lines represent
the start and end times of each step.

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Offline Data Preprocessing

● Offline data preprocessing job:
○ Load data from S3
○ Transform images and tokenize

captions
○ Infer images and texts with

encoders on A10G GPUs
○ Save results to back to S3

● Training job:
○ Ingest preprocessed data
○ Feed directly into A100

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Ray Data: a scalable data processing library for ML workloads built
on top of Ray. Particularly optimized for 2 scenarios:

● Offline batch inference
○ Image/video/audio processing + inference, embedding generation, LLM

batch inference, etc.
● Training ingestion

○ Scalable training data loading and preprocessing.

Ray Data

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Implementing Offline Preprocessing
w/ Ray Data

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Streaming execution, scalable to petabyte-scale data

• Support heterogeneous resource requirements

• Automatic failure recovery

• Support a large variety of data sources and formats
• S3, GCS
• Parquet, images, JSON, text, CSV, etc.

• Python native & seamless integration with other ML libraries

Why Ray Data

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

CPU GPU

Why Ray Data (cont’d)

Image
transform

Text
tokenize

Image
encode

Text
encodeS3 S3

Data chunks

Image
transform

Text
tokenize

Image
transform

Text
tokenize

Image
encode

Text
encode

Ray Object Store

● Streaming data loading,
processing, writing.

● Intermediate data
buffered in Ray Object
Store.

● Schedule tasks with
heterogeneous
resource requirements.

●Operators adjust
parallelism dynamically
and independently.

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Benchmark Results

Throughput scales linearly while adding more A10Gs. Constant 95+% GPU utilization

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Benchmark Results (cont’d)

+45% training throughput with preprocessed data

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Development velocity
• When experimenting with different preprocessing logics, need to wait for days

to preprocess the entire dataset.

• Flexibility
• Doesn’t support dynamic preprocessing logics

• e.g. random crop, multi-aspect

21

Limitations of Offline Preprocessing

Online preprocessing without blocking A100 GPUs?

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Reuse the same preprocessing
pipeline code

Ray Data For Online Preprocessing

● Dynamically split data across distributed
workers; no need for manual sharding

Heterogeneous
GPU
requirements

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

CPU A10G GPU A100 GPU

Architecture w/ Ray Data

Image
transform +

text tokenize
Image + text

encode

U-Net train

Image
transform +

text tokenize

Image
transform +

text tokenize

Image
transform +

text tokenize

Image + text
encode

Image + text
encode

U-Net train

S3

Ray Object Store

● Schedule different
stages on different
hardwares separately.

● Each stage scales up
individually, making
GPUs always saturated.

● Streaming across the
entire pipeline.

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Benchmark Results

Throughput scales linearly while adding more A10Gs until
reaching the same number as offline processing.

Online
Preprocessing w/
Torch DataLoader

Online
Preprocessing w/
Ray Data

Cluster 4 x p4de.24xlarge 4 x p4de.24xlarge
40 x g5.2xlarge

Training throughput
(images/s)

2811 4075 (+45%)

Total training time
on Anyscale

111.3h 76.8h (-31.0%)

Cost per epoch $18,192 $16,275 (-10.5%)

Ray Data vs Torch DataLoader for online preprocessing

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Offline Data Preprocessing
○ Streaming and scalable.
○ Fault tolerant.
○ Maximizes GPU utilization w/ heterogeneous resource scheduling.

● Online Data Preprocessing
○ Unified data pipeline code.
○ Splits data for distributed training dynamically.
○ Improves perf by scaling out data preprocessing on CPUs and lower-end

GPUs.
○ Makes A100s dedicated for U-Net training, improving A100 availability.

Ray Data for SD Data Preprocessing

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Challenges in Stable Diffusion Pretraining

• Scalable Data Processing with Ray Data

• Distributed Training with Ray Train

26

Content

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Ecosystem Integrations

● ML Frameworks

○ PyTorch, HuggingFace,

Lightning, TensorFlow, …

● Cloud Providers:

○ AWS, GCP, Azure, Aliyun,

vSphere, …

● Cluster Managers:

○ K8s, Yarn, Slurm, LSF, …

27

Distributed Training with Ray Train
Ray Train Ecosystem

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Distributed Training with Ray Train

28

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Distributed Training with Ray Train
PyTorch Integration

29

Setup distributed env

Setup DDP model

Setup distributed
sampler

Move batches to GPU

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Distributed Training with Ray Train
PyTorch Lightning Integration

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Key features of Ray Train

• Efficient Distributed Checkpoint

• Fault-Tolerant Training

• Easily integrate with training acceleration techniques

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Each worker independently syncs its checkpoint(shard) to cloud storage (e.g. S3, GCS).

● Support flexible checkpointing logics (World Rank 0, Local Rank 0, All ranks)

32

Efficient Distributed Checkpoint

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 33

Fault-tolerant Training

● Ray Cluster automatic scales up on node failure

● Restore training from the latest checkpoint

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● FSDP [8] is designed to reduce communication overhead by sharding model state. With

SHARD_GRAD_OP mode, which partition the gradient and optimizer states among all workers.

● Compared to DDP, it reduces communication overhead of full gradient synchronization and also reduces

peak GRAM usage, allowing for larger batch sizes and higher throughput.

34

Training Acceleration
FSDP

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Elastic Fabric Adapter (EFA) provides lower and more consistent latency and higher throughput than

the TCP transport traditionally used in cloud-based HPC systems.

● Significantly reduces the communication overhead and speeds up distributed training.

35

Training Acceleration
EFA

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Table 4.a: Training throughput (images/s) and

speedup on 16 x A100-40G.

36

Training Acceleration
Ablation Study - Training Speedup

Table 4.b: Training throughput (images/s) and

speedup on 32 x A100-80G.

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 37

Results

● Ray Data helps
resolved
preprocessing
bottlenecks, boosting
training throughput by
30%.

● System and training
optimizations further
reduce training costs
by 3x over baseline.

● We pre-trained the
Stable Diffusion v2
model from scratch for
under $40,000.

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 38

Takeaways

● Decouple encoder forward pass from Unet training to resolve preprocessing

bottleneck.

● Leverage heterogeneous resources to reduce overall training costs.

● Implement fault-tolerant training and efficient checkpointing to minimize

training progress loss.

● Apply infrastructure and algorithmic optimizations to accelerate training

speed.

©2024 Databricks Inc. — All rights reserved 39

Thank you

	Efficient Stable Diffusion Pre-Training on Billions of Images with Ray
	Speakers
	Overview

	Content
	Content
	Stable Diffusion Model Architecture
	Why pre-train from scratch?
	Challenges of SD Pretraining
	Content
	Traditional Data Pipeline w/ Torch DataLoader
	Data preprocessing blocks GPU training
	Offline Data Preprocessing
	Ray Data
	Implementing Offline Preprocessing w/ Ray Data
	Why Ray Data
	Why Ray Data (cont’d)
	Benchmark Results
	Benchmark Results (cont’d)
	Limitations of Offline Preprocessing
	Ray Data For Online Preprocessing
	Architecture w/ Ray Data
	Benchmark Results
	Ray Data for SD Data Preprocessing
	Content
	Distributed Training with Ray Train
	Distributed Training with Ray Train
	Distributed Training with Ray Train
	Distributed Training with Ray Train
	Key features of Ray Train
	Efficient Distributed Checkpoint
	Fault-tolerant Training
	Training Acceleration
	Training Acceleration
	Training Acceleration
	Results
	Takeaways
	Thank you

